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A s tudy   was   conducted  to  develop   an   impl ic i t   method  for   in tegra t ing   the   equat ions   o f  
motion  of a lumped-mass  model  of a rotor bearing  system.  The  approach  was,   f irst ,  to use  
a Nordsieck-like  numerical   integration  directly  on  the  second-order  equations  of  motlon 
and,  second. to a s s u m e   t h a t   t h e   f o r c e s   a n d   t o r q u e s   o n   t h e  rotor are functions  of t h e  position 
and  velocity at the  point  of  application  and  i ts   nearest   axial   neighbors.  This a l lows   the  
var iables  to be   a r r anged  so t h a t   t h e   J a c o b i a n   o f   t h e  set of  nonlinear  equations is block 
tridiagonal.  'I 'herefore the computa t iona l   t ime  i s   p ropor t iona l  to the   number   o f   e lements   in  
t h e  rotor dynamics   model   ra ther   than  to the   cube   of   the   number .   Numer ica l   s tab i l i ty   was  
demonstrated  for   any  l inear ized  homogeneous  mode.  

was   der ived   for  a damper   with  arbi t rary  motion.   Expl ic i t   resul ts   were  presented  for   no 
cavi ta t ion  and  for   ful l   cavi ta t ion.  

picture  showing  an  oblique  view  of  the  rotor  bearing  system. 'l'he motion of t h e  rotor could 
be easi ly   interpreted.  

mass   e lements   in   the rotor dynamics  model  took 0.7 second of central   processing  uni t   t ime 
p e r   t i m e   s t e p   o n   a n  IBM 360-67 computer   in  a t ime-sharing  mode.  The  mode  shapes at  t h e  
f i r s t   and   th i rd   c r i t i ca l  speeds were   s imi la r  to  t h e  predicted  mode shapes and   occur red  a t  
the  predicted  speed.   Because  of   the  unbalance  dis t r ibut ion,  the second  mode   was   no t  
excited.  Above t h e  th i rd   c r i t i ca l  speed t h e  rotor bear ing  system  operated as a self- 
center ing   device .   This   was  also observed  experimental ly .  

system  with  nonl inear   t ransients   and  displays  the  vast   amount  of resul ts   in   an  easi ly  
understood  motion-picture  format.  A 10-minute  16-millimeter, color, sound  mot ionplc ture  
supplement  is  available  on  loan. 

To decrease   computa t iona l   t ime,  a closed-form  solution to the  short-bearing  theory 

The   vas t   amount  of d a t a   g e n e r a t e d  by the   compute r  code was  displayed  in a motion 

An  example  problem  of a rotor   accelerat ing  through three c r i t i ca l   speeds   w i th   19  

The   compute r  code, f o r  the f i r s t   t ime,   a l lows  u s  to  look a t  a complex rotor bear ing 

IN TKOL) UCTION 

Nonlinear   t ransients  t h a t  are important   in   f lexible ,   rotat ing  equipment   are   diff icul t  
t o  analyze.   Such  things as blade  tip  rubs,  spline  friction,  and  squeeze-film  dampers are 
diff icul t  to  predic t   wi th  a linear  model.   Some  of t h e  t rans ien ts  t h a t  are impor tan t  are 
locked rotor starts, blade loss, and  rapid  decelerat ion  due t o  bearing  failures. 

There  are two  basic   methods  for   s tudying  t ransient  rotor oynamics.   The  f irst   method 
is   the   modal   method  ( refs .  1 and  2). I t   i s  best sui ted to l inear  rotor bearing  systems  mnning 
a t  a constant  speed. The second  method  is   the  direct integrat ion  of  t he  equat ions  of mo- 
t ion.   I t   can  be  applied  easily to  nonlinear  systerns tha t  are varying  in  speea. The  problem 
with t h e  direct   method is t h a t   i t   i s   l i m i t e d  by ei ther   computer   running  t ime or numer ica l  , 

stabil i ty.  

two  ways,  explicit or implici t   in tegrat ion.  'I'he expl ic i t   in tegrat ion  method  solves  the 
equations  of  motion a t  the   p resent   t ime  for   h igher   o rder   der iva t ives   and   then   ex t rapola tes  
the   d i sp lacements   and   ve loc i t ies   wi th  a Taylor   ser ies  to  the   advanced   t ime  (ref. 3). The  
implici t   method  solves   the  equat ions of motion  ( implicit ly) a t  the advanced   t ime   s t ep  f o r  

The  equations  of  motion  for rotor dynamics   can  be In tegra ted   d i rec t ly   in   e i ther  of 



the displacements and velocities, such that an extrapolation backward in time gives  the 
previous results. 

The explicit method tends to be unstable when the product of the critical frequency 
(for any  mode numerically possible) and the time  step is  large  (ref. 4). Since the highest 
frequency is  related  to the square of the number of elements in  the  rotor dynamics moael, 
the computational time will be related  to the square of the number of elements. Ap- 
proximately five or six elements seems  to be a  practical limit to the explicit method (ref. 2); 
that is, it can only be applied to simple assemblies. 

In contrast  to the explicit method, the implicit method tends to be stable  for large 
time  steps  (ref. 5); but it requires the solution of a  large number of nonlinear simultaneous 
equations at  each time  step. For every element in the rotor dynamics model there  are  four 
degrees of freedom. For each  degree of freedom there is an associated displacement and 
velocity. Therefore the total number of nonlinear equations to be solved a t  each time  step 
is eight times  the number of elements i n  the rotor dynamics model.  The number of com- 
putations necessary to solve these equations is proportional to the cube of the number of 
equations. Therefore the computing time is proportional to the cube of the number of 
elements. 

of motion in a reasonable amount of computing time. The approach is, first,  to use a 
Nordsieck-like numerical integration  directly on the second-order equations of motion1 
and, second, to assume that the forces and torques on the rotor are functions of the position 
and velocity of the point where the force or torque is applied and its nearest  axial 
neighbors. This allows the variables to be arranged so that  the Jacobian of the set of 
nonlinear equations is  block tridiagonal. The  computing time is proportional to  the number 
of elements in the rotor dynamics model rather than to the cube of the number of elements. 

Besides the problems associated with integrating  the equations of motion, there  is  a 
problem of describing the nonlinear damper force at each  instant of time  for an arbitrary 
orbit. In the past this-was done by numerically integrating  the Reynolds equation around the 
damper (ref. 6 ) .  This required a considerable amount of computing time. As  an aside, a 
closed-form solution to the short-bearing theory was derived for a damper with arbitrary 
motion. 

This study was conducted to develop an implicit method for integrating the equations 

SYMBOLS 

A coefficients used in partial-fraction expansion 

a property of shaft between mass stations defined in  eq. (18a) 

b property of shaf t  between mass stations defined in eq. (18b) 

C radial  clearance 

C property of shaft between mass stations defined in  eq. (18c) 

D diameter 

~~ 

lThis method of numerical  integration was developed by 
Lewis Research  Center.  For a set of first-order equations, 
method. 

Frank J. Zeleznik of 
it reduces  to Gear's 

the 
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ak 

modulus  of  elasticity 

f o r c e  

torque 

c learance   in   d i rec t ion  A 

moment  of iner t ia  

index 

index 

axial   length  between  mass   s ta t ions 

mass of a ro tor   segment  

number of ro tor   segments  

radial   direction a t  angle  8 

o rde r  of error   in   Taylor   ser ies  

pressure 

o rde r  of Taylor   ser ies  

radial   displacement 

s tab i l i ty   mat r ix  

e l emen t  of S 

t i m e  

t i m e   s t e p  

defined  in  eq.  (5) 

nondimensional  velocity  of  journal  in  rotating'  coordinates 

real   par t  of radial   displacement 

imaginary  part  of radial   d isplacement  

independent  variable 

ax ia l   coord ina te  

given set of constants  
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r angle defined in  eq. (43) 

E eccentricity  ratio 

c damping ratio 

e circumferential  angle 

h eigenvalue of stability  matrix 

c1 viscosity 

w frequency 

Subscripts: 

B bearing 

J journal 

P polar 

T transverse 

+ associated with nearest  axial neighbor or root of eq. (45) 

0 start of integration 

1 end  of integration 

- 

Superscripts: 

( 7  time  derivative 

( )' axial derivative 

(-3 average or conjugate 

(k)  kth time  derivative 

3 vector 

A 

unit vector 

NUMERICAL IN TEGKATION 

Given an arbitrary function zk(t) whose derivatives  exist, zk (t), a 'l'aylor series (3 
expansion can be written: 
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j = O  

with  Lagrange's  remainder  of order 0q-k.  If the   a rb i t ra ry   func t ion   i s   chosen  as 

the  Taylor series f o r  this funct ion  becomes 

where  the  binomial   coeff ic ients  are def ined  as 

If t he   fo rm of the   remainder   i s   chosen  as 

0 = crkU 
q 

the   Taylor   se r ies   becomes  

q 
Z k ( t  + A t )  = Z .  ( t )  + aku (3 J 

j-0 

where  ak is a g iven  set of   constants   and  u   can  be  determined  f rom  the  equat ion  of   motion 
a t  the  advanced  t ime.   The  equat ion  of   motion a t  t h e   a d v a n c e d   t i m e   i s  

x F ( r ,  k ,  r ,  t + A t )  = 0 
.. 

(7 1 

From  the   def in i t ion   o f  z, t h e  var ious   der iva t ives   become 
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Subst i tut ing  for  t h e  various  derivatives  into the equation  of  motion  and  knowing the values  
at the  previous  t ime  resul t   in   the  equat ion of motion  being a funct ion of 

C F ( u ,  t + A t )  = 0 (9) 

This   equat ion  can  be  solved  for   u   and,   f rom  this   value  of  u, the remainder   can be used as 
a n   e r r o r   e s t i m a t e   t o   c o n t r o l  the t ime  s tep .  

NUMERICAL  STABILITY 

The  analysis of the  s tabi l i ty   of   the   numerical   in tegrat ion  technique  assumes a moael  
of a rotor   bear ing  system  that   i s   l inear ized a t  some  instant  of t ime. The homogeneous 
equat ion  of   motion  for   any  mode  is  

where w is the  natural   f requency  and 5 is the  c lamping  ra t io   for   the  moue.  For every 
mode tha t  is numerically  possible,  with  nonnegative  damping  ratio,  the  amplitude  must 
e i ther   remain   cons tan t  or decay  in   t ime.   The  numerical   Integrat ion  is   def inea as unstable 
if the ampli tude grows in  t ime.  

From t h e  definition  of z t h e  modal   equa t ion   becomes  

Substi tuting  the  Taylor series into  the  modal   equat ion a t  the  advanced  t ime  resul ts   in  

q 

j=O 

For this  value of u, the  Taylor series expresses  the  solution a t  the  advancea   t ime  in   t e rms  
of the solution a t  the   p resent   t ime as 

Z k ( t  + A t )  = f: ((i) - akr[ 
j = O  

j ( j - 1) + 2jw A t  5 +  ((I: 

2a2 + 2a1w A t  5 + ao(w A t )  J 
z .  (t) (13) 

Defin ing   the   mat r ix   e lement  skj t o   b e  



and  the  q-dimension  vector Z gives  the  eigenvtliue  equation as 
-c 

If t h e  I X I > 1 , the   ampl i tude   g rows  ana   the   method is numerically  unstable.  For q = 2, 
the   g iven  Q'S a r e  a0 = 2, a1 = 3, and a2 = 1. In the   l imi t  as w At + a, the   maximum 
]X 1 -+ 0. Therefore   i f   the   t ime  s tep  A t  i s   much  la rger   than  w-1 for a mode, the 

ampli tude of tha t   mode  will  approach zero. If a mode is to  have a nonzero  amplitude,  wh 
must  be small. In the  l imit  as w At + 0, the   maximum ]X I -+ 1. Therefore   the  method 
is numerically  stable  in  the  two  l imits.  

EQUATIONS OF MOTION 

A model of t he  shaf t   showing  the  complex  number  representat ion of the  radial  
displacement  r is shown  in  figure 1. The  radial  clisplacement is the   d i s tance   be tween  the  
shaf t   cen ter l ine   and   the   ax is  of  rotation.  I t   can  be  represented by 

where  the real and   imaginary   axes   a re   f ixed   in   space   perpendicular   to   the   ax is  of rotation. 
The  s lope of the   shaf t   a long   the   ax is  of ro ta t ion   i s  

The  posit ion of the   shaf t   i s   then   descr ibed  by r  and r' at  all the  axial   locations.  

iner t ia  of each   segment  are assumed  to   be   concent ra ted  at  a point.  These  points are then 
assumed  to   be   connec ted  by massless   e las t ic   beams that model   the  s t f f fness   of   the   rotor .  

sum of t h e  forces C F  at  a point,   must  be  zero,  where 

The  lumped-mass  moael of a rotor   divides   the  rotor   into N segments.  ? h e  mass  and 

The  equations of motion for the  lumped-mass  moael   were  der ived  in   reference 7. The 

CF = -mF + a " r - (a- + a+)r + a r + +  
+ b r' + ( b  - b+)r '  - b r '  + F = 0 
" - + +  ( 1 7 4  

and   the   sum  of   the   to rques  C G  about  a point  must  be zero, where 

- b - r- + (b- - b+)r + b+r+ 

- c-ri - 2 ( c  + c+)r' - c r' + G - + +  



The + or - refer  to the next or previous axial location; and a, b, and c  are  properties of 
the shaft between these locations: 

a = 12EI/L 3 

b = 6EI/L 2 

If the nonlinear force F and the nonlinear torque G are functions of displacements 
and velocities of the point and its  nearest neighbors, the and C G  are functions of the 
displacements and velocities of the point  and its nearest neighbors. If the Taylor series of 
the numerical integration technique is substituted  into  the equations of motion for the 
acceleration, velocity, and displacement, the form of the equations of motion becomes 

These equations form a  set of 2N complex nonlinear equations in 2 N  unknowns. 
These equations are solved by rewriting' them as 4 N  real equations in 4 N  real unknowns 
and then using a Newton-Raphson iterative technique to  obtain a numerical solution. The 
Newton-Raphson technique assumes a solution, linearizes  the equations about that solution, 
and then solves the linear set of equations for  a  correction  to  the assumed solution. The 
form of the  equations of motion results in the  linear  set of equations being  block tri- 
diagonal (fig. 2). The block-tridiagonal form allows the set of equations to  be solved i n  a 
very efficient manner.  The computing time is proportional to N rather than to N 3  as in 
the  general method. 

SQUEEZE-FILM DAMPER BEARING 

The configuration of the squeeze-film damper is shown in figure 3. The same con- 
figuration can be  used to analyze journal bearings where the journal and the bearing are 
allowed to  rotate. If OJ is the  rotational speed of the journal and WB is the  rotational 
speed of the bearing, the  average  rotational speed is 

For a damper this  average  rotational sp$ed would be zero. 
If C is the radial clearance and r is  the displacement of 

respect  to the bearing center, the  clearance h in  the  direction 
the journal center with 
fi 1s 

h = c - r . n  + A  

8 



I f  k is   the  velocity  of  the  journal,  

- =  ah 5 .. -r n a t  

If fi is at an   ang le  e, 

The  Reynolds  equation  for the  short, plain  damper   journal   bear ing  is   presented  in  
r e fe rence  6 as 

If the  boundary  conditions  in  the  damper  bearing  are 

P (O,  e ,  t> = o 

N L ,  e ,  t) = o 

and  if   h  is   not a funct ion of z, 

The  eccent r ic i ty   ra t io  is 

so t h a t  

- + r  
C 

-+ 
E "  

. +  
* r  

C 
E " -  

9 



If f is   def ined as 

The  przssure  is   zero  when fi i s   pe rpend icu la r   t o  V, and   t he   p re s su re   i s   g rea t e r   t han   ze ro  
when V ; > 0. 

80  t o  61 i s  

-+ 

The  force  on  the  journal   due  to   the  pressure  in  a segment  of t h e  f i lm extenaing fro111 

This   expression  for   the  force  can  be  integrated  axial ly   and  becomes 

The  angular   iniegral   can  be  integrated  byJransforming  the  integralJo  the  complex 
plane  (fig. 4). Let  V be  in  the real direction, E be a t  an   ang le  $, and  n  be at an   angle  
8 so t h a t  

v = I V ]  (35a) 

ie n = e  

Different ia t ing  the  expression for n  yields 

-I de = - in  dn 

and  using  the  def ini t ion of the  complex  cosine  yields  

10 



The  expression  for   the  force  becomes 

n2(n2 + 1)dn 
(En2 - 2n + E) 

3 

where  the  integral  is around  the  uni t  circle f rom  no   t o  "1, where 
i9 

no = e 
0 

iB1 

nl = e 

(39) 

The  pressure is z e r o  at n = - + i, and   the   p ressure   i s   g rea te r   than   zero   when /?e(n) i s   g r e a t e r  
than  zero.  

For no cavi ta t ion t h e  integral   extends  completely  around the  journal;   and by using  the 
theory of residues,   the   force  becomes 

For cavi ta t ion  the  integral   extends from -i t o  +i; a n d  by  using a partial-fraction  tech- 
nique,   the  force becomes  

where I' is   defined as 

and  r is in  the  f irst  or second  quadrant.   The  partial-fraction  expansion  coefficients  are 

11 



2n,(2nL + 1) 3A,, z 

where  the  roots  of the  denominator   of  t h e  force   equat ion   a re  

DISCUSSION OF EXAMPLE 

The  rotor  bearing system descr ibed  in   reference 8 was used as the  example  problem. 
This  rotor  bearing  system  consisted of' a shaf t   wi th   three  disks   mounted  on  two  axial ly   pre-  
loaded  ball   bearings (fig. 5). The  bearings  were  mounted  in a squeeze-film  damper  journal, 
and  the  journal  had a centering  spring. 

The  f i rs t   three  cr i t ical   speeds for the  rotor   bear ing  system  without   oi l   in   tne  damper  
are   shown  in   f igure 6.  All  the  modes are bent-shaft  modes.  The  llclassicalll  hierarchy  only 
applies to stiff shaf ts ;   therefore ,   the   c lass ical   moae  shapes do no t   cha rac t e r i ze   t he   ac tua l  
mode  shapes.   The  f irst   mode,  about 7581 rpm,  classically  would  be t h e  cylindrical  mode. 
But  in  this case, i t   has  a large amount  of bending  outward  near the  shaf t   center .   The sec- 
ond  mode,  about  9235 rpm, classically  would  be  the  conical  mode. In this case, it has  a 
slight  amount of  bending  outward  near  the  shaft  ends.  The  third  moue,  about  11  248  rpm, 
classically  would  be  the  bending  mode. In this case, i t   h a s  a large amount  of bending 
throughout   the  shaf t .  

speeds.   The  Lissajous  patterns  for  the  three  disks  were  displayed  on  three  side-by-siae 
cathode  ray  tubes.   A  motion  picture  was  taken of the  CRT's  plus a speed  counter.  The 
Lissajous  patterns at the   th ree   c r i t i ca l   speeds  are shown  on  f igures 7 to 9. The   th ree  
cr i t ical   speeds  occurred a t  about  the  predicted  speeds,   and  the  Lissajous  patterns  corre- 
sponded to the  three  mode  shapes.  

The  rotor  bearing  system  was  modeled by using  19  elements.  The  rotor was assumed 
t o   h a v e  a uniform,  in-line  unbalance,  with a mass  eccentr ic i ty  of 0.00254 c e n t i m e t e r  (1 
mil). The  equations of  motion  for  this  system  were  programed  in  FORTRAN IV o n   a n  IBM 
360-67 computer   in  a time-sharing  mode.  The  equations of mot ion   were   d i rec t ly   in tegra ted  
by the  implici t   in tegrat ion  method,   with a f ixed  t ime  s tep  of  0.12 millisecond.  The  tran- 
sient  analyzed  was  the rotor acce lera ted   f rom rest through  the   th ree   c r i t i ca l  speeds. The 
rate of   accelerat ion  was 8727 rad/sec2.   Each  t ime  s tep  took  about  0.7 second  of  CPU  t ime. 

The  output at e a c h   t i m e   s t e p  of the  calculat ion  was  displayed  on a CRT.  The  display 
showed  an  obl ique  view  of   the  rotor   bear ing  system,  with  the  bear ing  center l ine as t h e  ob- 
l ique  axis.   The  transverse  vibration is indicated by a series of dots.   Each  dot  represents a 

Exper imenta l ly   the   ro tor   was   acce le ra ted   f rom  res t   th rough  the   th ree   c r i t i ca l  
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l oca t ion   o f   an   e l emen t   i n   t he  rotor dynamics  model. The scale of  the  transverse  vibration 
exaggera tes   the   ampl i tude   o f  the  vibration.  The  display  on  the  CKT  was  photographed at  
each   t ime  s tep .   These   photographs   were   then   shown as a motion  picture.  

The  computer-generated  displays  on  the CR?' a t  the  f i rs t   and  third  cr i t ical   speeds  and 
a t  a speed  much greater than   the   th i rd   c r i t i ca l   speed  are shown  in  f igures  10 to  12. The  
mode  shapes at the   f i r s t   and   th i rd   c r i t i ca l   speeds   were   s imi la r  to the  predicted  mode  shapes 
and   occur red  a t  the  predicted  speed.  Because  of  the  unbalance  distribution,  the  second 
mode  was  not   exci ted.   The  only  indicat ion of the  second  mode  was a traveling  wave  super- 
imposed  on  the  f irst   mode  shape.  This  traveling  wave  decayea  when  the rotor went   through 
the  third  cr i t ical   speed.   Above  the  third  cr i t ical   speed,   the  rotor bear ing  system  operated 
as a self-centering  device.   The  mass  centerline  coincided  with  the  bearing  centerline.  
Therefore,   the rotor displacement   was  uniform  and  in   l ine,   wi th   an  ampli tude  of  0.00254 
cen t ime te r   (1  mil). 

In  conclusion,  this  computer coue fo r   t he   f i r s t   t ime  allows us  to look a t  complex rotor 
bear ing  systems  experiencing  nonl inear   t ransients   and  displays  the  vast   amount   of   resul ts   in  
an  easily  understood  motion-picture  format.  A 10-minute,  16-millimeter, color, sound 
motion-picture   supplement   is   avai lable ,   on  loan,   that   shows  the test data and   the   computer -  
made  motion  picture .  

CONCLUSIONS 

An implici t   method  for   integrat ing t h e  equat ions  of mot ion   for  a lumped-mass  model 
of a rotor dynamic  system  was  developed.  The  following  conclusions  were  drawn: 

1. The method  was   numer ica l ly   s tab le   for   any   t ime  s tep .  
2. An error e s t ima te   was   ava i l ab le  to  con t ro l  t he  s ize  of the   t ime   s t ep .  
3. The  computat ional   t ime  was  proport ional  to the   number   o f   e lements   in   the  rotor 

4. An  example  problem  with  19  mass  elements  in t h e  rotor dynamics  model  took 0.7 
dynamics   model   ra ther   than  to the   cube   of   the   number .  

second of central   processing  uni t   t ime  per   t ime  s tep  an  an IBM 360-67  computer  in a 
time-sharing  mode. 

experiencing  nonlinear  transients  and  displays  the  vast   amount of resul ts   in   an  easi ly  
understood  motion-picture  format. 

For the  f i rs t   t ime,   this   code  a l lows  the  s imulat ion  of  a complex rotor bearing  system 

Lewis   Research  Center ,  
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,   September  19,   1979, 
505-04. 
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Figure 1. - Model of shaft  showing complex number  representation 
of radial  displacements. 

I I I I 
I I I I 

I I I 
I 
I 
I 

I I I I 
I I I I 

'1 I c1 I 0 I e I 0 

t""" A"""+""-+""- 

A2 I 52 I c2 I e I e 
I I I I 
I I I I 

I 
I I I I 
I I I I 

0 I e I e I e I 
I I I I 
I I I I 

0 

I I i I 
T"""I""" t""- 7""" 
I I I I 
I I I I 
I e I AN-l I 'N-1 I 'N-1 

I 
I 

e 

Figure 2. - Newton-Raphson  technique  that leads to a l inear set of block-tridiagonal  equations. 
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Figure 3. - Damper  bearing  geometry. 

F igure 4. - Complex  plane. 
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Data acquisition 

Figure 5. - Rotor  bearing  system  used  as  example problem. 
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Figure 6. - Undamped  critical speeds. 
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Figure 7. - Rotor   pass ing  through  f i rs t   c r i t ica l  speed. 

Figure 8. - Rotor  passing  through  second  cr i t ical  speed. 
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Figure 9. - Rotor  passing  through  third  critical speed. 
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Figure 10. - Oblique  view of rotor  centerline as  rotor 
passes through  f irst  crit ical  speed. 
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Figure 11. - Oblique  view of ro to r   cen ter l ine  as rotor 
passes t h r o u g h   t h i r d   c r i t i c a l  speed. 
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Figure 12. - Oblique  view of ro to r   cen ter l ine  at  rotor 
speeds much  g rea ter   than  th i rd   c r i t i ca l .  
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